Section 225.APPENDIX B Continuous Emission Monitoring Systems
for Mercury
Section 225.EXHIBIT C Conversion Procedures
1. Applicability
Use the procedures in
this Exhibit to convert measured data from a monitor or continuous emission monitoring
system into the appropriate units of the standard.
2. Procedures for Heat
Input
Use the following
procedures to compute heat input rate to an affected unit (in mmBtu/hr or
mmBtu/day):
2.1
Calculate and record
heat input rate to an affected unit on an hourly basis. The owner or operator
may choose to use the provisions specified in 40 CFR 75.16(e), incorporated by
reference in Section 225.140, in conjunction with the procedures provided in
Sections 2.4 through 2.4.2 to apportion heat input among each unit using the
common stack or common pipe header.
2.2
For
an affected unit that has a flow monitor (or approved alternate monitoring
system under subpart E of 40 CFR 75, incorporated by reference in Section
225.140, for measuring volumetric flow rate) and a diluent gas (O2
or CO2) monitor, use the recorded data from these monitors and one
of the following equations to calculate hourly heat input rate (in mmBtu/hr).
2.2.1
When
measurements of CO2 concentration are on a wet basis, use the
following equation:
(Eq.
F-15)
Where:
|
HI
|
=
|
Hourly heat input rate during unit operation, mmBtu/hr.
|
|
Qw
|
=
|
Hourly average volumetric flow rate during unit operation, wet
basis, scfh.
|
|
Fc
|
=
|
Carbon-based F-factor, listed in Section 3.3.5 of appendix F to
40 CFR 75 for each fuel, scf/mmBtu.
|
|
%CO2w
|
=
|
Hourly concentration of CO2 during unit operation,
percent CO2 wet basis.
|
2.2.2
When
measurements of CO2 concentration are on a dry basis, use the
following equation:
(Eq.
F-16)
Where:
|
HI
|
=
|
Hourly heat input rate during unit operation, mmBtu/hr.
|
|
Qh
|
=
|
Hourly average volumetric flow rate during unit operation, wet
basis, scfh.
|
|
Fc
|
=
|
Carbon-based F-factor, listed in Section 3.3.5 of appendix F to
40 CFR 75 for each fuel, scf/mmBtu.
|
|
%CO2d
|
=
|
Hourly concentration of CO2 during unit operation,
percent CO2 wet basis.
|
|
%H2O
|
=
|
Moisture content of gas in the stack, percent.
|
2.2.3
When
measurements of O2 concentration are on a wet basis, use the
following equation:
(Eq.
F-17)
Where:
|
HI
|
=
|
Hourly heat input rate during unit operation, mmBtu/hr.
|
|
Qw
|
=
|
Hourly average volumetric flow rate during unit operation, wet
basis, scfh.
|
|
F
|
=
|
Carbon-based F-factor, listed in Section 3.3.5 of appendix F to
40 CFR 75 for each fuel, scf/mmBtu.
|
|
%O2w
|
=
|
Hourly concentration of O2 during unit operation,
percent O2 wet basis.
|
|
%H2O
|
=
|
Hourly average stack moisture content, percent by volume.
|
2.2.4
When
measurements of O2 concentration are on a dry basis, use the
following equation:
(Eq.
F-18)
Where:
|
HI
|
=
|
Hourly heat input rate during unit operation, mmBtu/hr.
|
|
Qw
|
=
|
Hourly average volumetric flow during unit operation, wet basis,
scfh.
|
|
F
|
=
|
Dry basis F-factor, listed in Section 3.3.5 of appendix F to 40
CFR 75 for each fuel, dscf/mmBtu.
|
|
%H2O
|
=
|
Moisture content of the stack gas, percent.
|
|
%O2d
|
=
|
Hourly concentration of O2 during unit operation,
percent O2 dry basis.
|
2.3
Heat Input Summation
(for Heat Input Determined Using a Flow Monitor and Diluent Monitor)
2.3.1
Calculate total
quarterly heat input for a unit or common stack using a flow monitor and
diluent monitor to calculate heat input, using the following equation:
(Eq.
F-18a)
Where:
|
HIq
|
=
|
Total heat input for quarter "q", mmBtu.
|
|
HIi
|
=
|
Heat input rate for hour "i" during unit
operation, using Equation F-15, F-16, F-17, or F-18, mmBtu/hr.
|
|
ti
|
=
|
Hourly operating time for the unit or common stack, hour or
fraction of an hour (in equal increments that can range from 100th
to one quarter of an hour, at the option of the owner or operator).
|
|
n
|
=
|
Number of unit operating hours in the quarter.
|
2.3.2
Calculate total
cumulative (year-to-date) heat input for a unit or common stack using a flow
monitor and diluent monitor to calculate heat input, using the following
equation:
(Eq.
F-18b)
Where:
|
HIc
|
=
|
Total heat input for the year-to-date, mmBtu.
|
|
HIq
|
=
|
Total heat input for quarter "q", mmBtu.
|
2.4 Heat Input Rate
Apportionment for Units Sharing a Common Stack or Pipe
2.4.1
Where applicable, the
owner or operator of an affected unit that determines heat input rate at the
unit level by apportioning the heat input monitored at a common stack or common
pipe using megawatts must apportion the heat input rate using the following
equation:
(Eq.
F-21a)
Where:
|
HIi
|
=
|
Heat
input rate for a unit, mmBtu/hr.
|
|
HIcs
|
=
|
Heat input rate at the common stack or pipe, mmBtu/hr.
|
|
MWi
|
=
|
Gross electrical output, MWe.
|
|
ti
|
=
|
Unit operating time, hour or fraction of an hour (in equal
increments that can range from 100th to one quarter of an hour, at
the option of the owner or operator).
|
|
tcs
|
=
|
Common stack or common pipe operating time, hour or fraction of
an hour (in equal increments that can range from 100th to one
quarter of an hour, at the option of the owner or operator).
|
|
n
|
=
|
Total number of units using the common stack or pipe.
|
|
i
|
=
|
Designation of a particular unit.
|
2.4.2
Where applicable, the
owner or operator of an affected unit that determines the heat input rate at
the unit level by apportioning the heat input rate monitored at a common stack
or common pipe using steam load must apportion the heat input rate using the
following equation:
(Eq.
F-21b)
Where:
|
HIi
|
=
|
Heat
input rate for a unit, mmBtu/hr.
|
|
HIcs
|
=
|
Heat input rate at the common stack or pipe, mmBtu/hr.
|
|
SF
|
=
|
Gross steam load, lb/hr, or mmBtu/hr.
|
|
ti
|
=
|
Unit operating time, hour or fraction of an hour (in equal
increments that can range from 100th to one quarter of an hour, at
the option of the owner or operator).
|
|
tcs
|
=
|
Common stack or common pipe operating time, hour or fraction of
an hour (in equal increments that can range from 100th to one
quarter of an hour, at the option of the owner or operator).
|
|
n
|
=
|
Total number of units using the common stack or pipe.
|
|
i
|
=
|
Designation of a particular unit.
|
2.5 Heat Input Rate
Summation for Units with Multiple Stacks or Pipes
The owner or operator
of an affected unit that determines the heat input rate at the unit level by
summing the heat input rates monitored at multiple stacks or multiple pipes
must sum the heat input rates using the following equation:
(Eq.
F-21c)
Where:
|
HIUnit
|
=
|
Heat input rate for a unit, mmBtu/hr.
|
|
HIs
|
=
|
Heat input rate for the individual stack, duct, or pipe,
mmBtu/hr.
|
|
tUnit
|
=
|
Unit operating time, hour or fraction of the hour (in equal
increments that can range from 100th to one quarter of an hour, at
the option of the owner or operator).
|
|
t5
|
=
|
Operating time for the individual stack or pipe, hour or
fraction of the hour (in equal increments that can range from 100th
to one quarter of an hour, at the option of the owner or operator).
|
|
s
|
=
|
Designation for a particular stack, duct, or pipe.
|
3. Procedure for
Converting Volumetric Flow to STP
Use the following
equation to convert volumetric flow at actual temperature and pressure to
standard temperature and pressure.
(Eq.
F-22)
Where:
|
FSTP
|
=
|
Flue gas volumetric flow rate at standard temperature and
pressure, scfh.
|
|
FActual
|
=
|
Flue gas volumetric flow rate at actual temperature and
pressure, acfh.
|
|
TStd
|
=
|
Standard temperature = 528 degreesR.
|
|
TStack
|
=
|
Flue gas temperature at flow monitor location, degreesR, where
degreesR = 460 + degreesF.
|
|
PStack
|
=
|
The absolute flue gas pressure = barometric pressure at the flow
monitor location + flue gas static pressure, inches of mercury.
|
|
PStd
|
=
|
Standard pressure = 29.92 inches of mercury.
|
4. Procedures for
Mercury Mass Emissions.
4.1
Use the procedures in
this Section to calculate the hourly mercury mass emissions (in ounces) at each
monitored location for the affected unit or group of units that discharge
through a common stack.
4.1.1
To determine the
hourly mercury mass emissions when using a mercury concentration monitoring
system that measures on a wet basis and a flow monitor, use the following
equation:
(Eq.
F-28)
Where:
|
Mh
|
=
|
Mercury mass emissions for the hour, rounded off to three
decimal places (ounces).
|
|
K
|
=
|
Units conversion constant, 9.978 x 10-10
oz-scm/µg-scf.
|
|
Ch
|
=
|
Hourly mercury concentration, wet basis (µg/wscm).
|
|
Qh
|
=
|
Hourly stack gas volumetric flow rate (scfh).
|
|
th
|
=
|
Unit or stack operating time (hr), as defined in 40 CFR 72.2,
incorporated by reference in Section 225.140.
|
4.1.2
To determine the
hourly mercury mass emissions when using a mercury concentration monitoring system
that measures on a dry basis or a sorbent trap monitoring system and a flow
monitor, use the following equation:
(Eq.
F-29)
Where:
|
Mh
|
=
|
Mercury mass emissions for the hour rounded off to three decimal
places (ounces).
|
|
K
|
=
|
Units conversion constant, 9.978 x 10-10 oz-scm/µg-scf.
|
|
Ch
|
=
|
Hourly
mercury concentration, dry basis (µg/dscm). For sorbent trap systems, a
single value of Ch (i.e., a flow-proportional average
concentration for the data collection period) is applied to each hour in the
data collection period, for a particular pair of traps.
|
|
Qh
|
=
|
Hourly stack gas volumetric flow rate (scfh).
|
|
Bws
|
=
|
Moisture fraction of the stack gas expressed as a decimal
(equal to %H2O 100).
|
|
th
|
=
|
Unit or stack operating time (hr) as defined in 40 CFR 72.2,
as incorporated by reference in Section 225.140.
|
4.1.3
For
units that are demonstrated under Section 1.15(d) of Appendix B to emit less
than 464 ounces of mercury per year, and for which the owner or operator elects
not to continuously monitor the mercury concentration, calculate the hourly
mercury mass emissions using Equation F-28 in Section 4.1.1 of this Exhibit,
except that "Ch" will be the applicable default mercury
concentration from Section 1.15(c), (d), or (e) of Appendix B,
expressed in µg/scm. Correction for the stack gas moisture content is not
required when this methodology is used.
4.2
Use the following
equation to calculate quarterly and year-to-date mercury mass emissions in
ounces:
(Eq.
F-30)
Where:
|
Mtime_period
|
=
|
Mercury mass emissions for the given time period, i.e., quarter
or year-to-date rounded to the nearest 1000th (ounces).
|
|
Mh
|
=
|
Mercury mass emissions for the hour rounded to three decimal
places (ounces).
|
|
n
|
=
|
The number of hours in the given time period (quarter or
year-to-date).
|
4.3
If heat input rate monitoring is required, follow the
applicable procedures for heat input apportionment and summation in Sections 2.3, 2.4 and
2.5 of this Exhibit.
5. Moisture
Determination from Wet and Dry O2 Readings
If
a correction for the stack gas moisture content is required in any of the
emissions or heat input calculations described in this Exhibit, and if the
hourly moisture content is determined from wet- and dry-basis O2
readings, use Equation F-31 to calculate the percent moisture, unless a K-factor
or other mathematical algorithm is developed as described in Section 6.5.6(a)
of Exhibit A to Appendix B:
(Eq.
F-31)
Where:
|
%H20
|
=
|
Hourly average stack gas moisture content, percent H2O.
|
|
O2d
|
=
|
Dry-basis hourly average oxygen concentration, percent O2.
|
|
O2w
|
=
|
Wet-basis hourly average oxygen concentration, percent O2.
|